Normal numbers and Diophantine approximation
نویسنده
چکیده
We begin by recalling some classical results on normal and nonnormal numbers. Then, we discuss the following general question. Take a property of Diophantine approximation (e.g., to be badly approximable by rational numbers, to be a Liouville number, etc.) and a property concerning the digits (e.g., to be normal, to lie in the middle third Cantor set, etc.), do there exist real numbers having both properties? What is the dimension of the set of such numbers?
منابع مشابه
Ergodic Theory on Homogeneous Spaces and Metric Number Theory
Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...
متن کاملOn the Diophantine Equation x^6+ky^3=z^6+kw^3
Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملMetrical Theorems for Inhomogeneous Diophantine Approximation in Positive Characteristic
We consider inhomogeneous Diophantine approximation for formal Laurent series over a finite base field. We establish an analogue of a strong law of large numbers due to W. M. Schmidt with a better error term than in the real case. A special case of our result improves upon a recent result by H. Nakada and R. Natsui and completes a result of M. M. Dodson, S. Kristensen, and J. Levesley. Moreover...
متن کاملA Note on Metric Inhomogeneous Diophantine Approximation
An inhomogeneous version of a general form of the Jarn k-Besicovitch Theorem is proved. Dedicated to Professor F. Chong for his 80th birthday 1. Introduction In some respects, inhomogeneous Diophantine approximation is rather diierent from homogeneous Diophantine approximation. Results in the former, where the additional variables ooer extràdegrees of freedom', are sometimes sharper or easier t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012